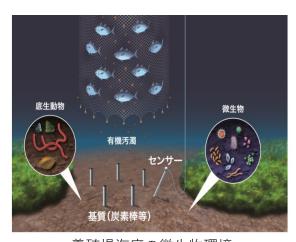
海底の微生物叢から養殖場としての適性を読み解く

養殖場選定のための微生物学的評価技術



イメージ

海底堆積物中の 微生物機能を解明 合理的に養殖場を 選定する技術 海底堆積物中の微生物環境を調べることで、その**海域の養殖漁場としての適性を評 価する技術**を開発しました。

赤潮発生の可能性、海底環境の強靱さな ど、養殖場として満たすべき微生物学的条件についてのデータを「漁場適性カルテ」 として提供することで、より合理的な漁場 選定が可能になります。

これにより、次世代の養殖漁場へ豊かな 海を継承します。

養殖場海底の微生物環境

		18S×夕解析	定量PCR
有害微細藻	Alexandrim leei		
	Alexandrium spp.		
	Heterocapsa		
	circularisquama Karenia mikimotoi		
	(水柱) Cochilodinium		
	polykrikoides		
	Chattonella spp.		
		休眠期細胞	
珪藻	Skeletonema spp.		
	Chaetoceros spp.		
	Thalassiosira spp.		
		個体密度	
ベントス	海産ミミズ		
	イトゴカイ		
	コケゴカイ		
	ヒメゴカイ		
	カンザシゴカイ		
		メタゲノム解析	
追加項目	細菌叢		
	ウイルス叢		
	寄生性真核生物		
	ラビリンチュラ		
コメント欄:			
(例:有害藻類のシク	『ナルはAlexandrium spp. 有すると考えられる。また、ラ	 のみ。ベントスの個体群績	 且成から、きわめて高い <u>有機物</u>

漁場適性カルテの一例 (様々なパラメータから適性を評価する)

研究代表機関

プロジェクト名

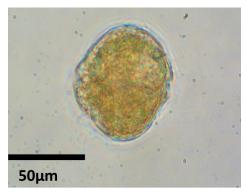
研究期間

高知大学

微生物学的情報に基づく漁場適性評価技術の開発

平成28年度~ 令和2年度

共同研究機関:水産研究・教育機構、北里大学、甲南大学


研究背景

養殖場を作るには大きな投資が必要となるため、現場の漁業者にとって 養殖に適した海域の選定は重要です。これまでの研究から、養殖場の適性 評価には、有害プランクトンの発生による赤潮や、エサなど有機物の分解 等にかかわる海底の微生物環境が重要と考えられます。

このため、本研究では、有害プランクトンの休眠細胞(シスト)など海 底堆積物(底質)の微生物環境に着目して、漁場環境としてふさわしい微 生物環境を維持するための要件を明らかにし、科学的根拠をもって漁場適 性を評価する技術を開発することとしました。

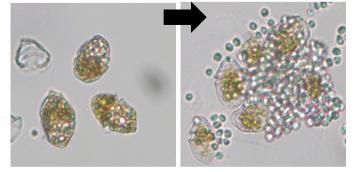
有機物分解を担う海底生物(ベントス) (ヒメナイワンイトミミズ)

新奇な赤潮の原因となる藻類の一種 (Alexandrium leei)

主要な成果

- 異的に検出、解析する技術を 開発
- 有害プランクトン等を抑制す る寄生生物(ツボカビ類)や ベントスを発見、解明
- ※3 沿岸域寄生生物(ラビリンチュラ類) が微細藻類の分解及びDHA※ 産生に関与することを解明

※ DHA:ドコサヘキサエン酸、魚類の必須脂肪酸


新教育書プランクトン等をDNA特 ── 海域毎の赤潮発生の危険性を推し 量るデータを提供

> **── 環境の強靱さ**を計る鍵となる ベントス種等を決定

漁場評価パラメータの一項目 としてラビリンチュラ類の重要性 を新たに証明

各種ベントスの有害プランクトンに対する阻害効果

ラビリンチュラによる微細藻類(渦鞭毛藻)への攻撃

