ステアリドン酸産生及び除草剤グリホサート耐性ダイズ
(改変 Pj.D6D，改変 Ne.Fad3，改変 cp4 epsps，Glycine max (L.) Merr.)
(MON87769×MON89788, OECD UI: MON-87769-7×MON-89788-1)

申請書等の概要

第一種使用規程承認申請書 ... 1
第一 生物多様性影響の評価に当たり収集した情報 3
10 1 宿主又は宿主の属する分類学上の種に関する情報 3
 (1) 分類学上の位置付け及び自然環境における分布状況 3
 ① 和名、英名及び学名 ... 3
 ② 宿主の品種名又は系統名 ... 3
 ③ 国内及び国外の自然環境における自生地域 3
 (2) 使用等の歴史及び現状 .. 4
 ① 国内及び国外における第一種使用等の歴史 4
 ② 主たる栽培地域、栽培方法、流通実態及び用途 4
 (3) 生理学的及び生態学的特性 ... 5
 イ 基本的特性 ... 5
20 ロ 生息又は生育可能な環境の条件 .. 5
 ハ 捕食性又は寄生性 ... 6
 ニ 繁殖又は増殖の様式 ... 6
 ① 種子の脱粒性、散布様式、休眠性及び寿命 6
 ② 栄養繁殖の様式並びに自然条件において植物体を再生しうる組織
 又は器官からの出芽特性 ... 6
 ③ 自殖性、他殖性の程度、自家不和合性の有無、近縁野生種との交
 織性及びアポミクシスを生ずる特性を有する場合はその程度 6
 ④ 花粉の生産量、稔性、形状、媒介方法、飛散距離及び寿命 10
 ホ 病原性 .. 11
30 ヘ 有害物質の産生性 .. 11
 ロ その他の情報 ... 11
2 遺伝子組換え生物等の調製等に関する情報 ... 11
 (1) 供与核酸に関する情報 .. 12
 イ 構成及び構成要素の由来 .. 12
35 ロ 構成要素の機能 ... 12
 ① 目的遺伝子、発現調節領域、局在化シグナル、選抜マーカーその
 他の供与核酸の構成要素それぞれの機能 12
② 目的遺伝子及び選抜マーカーの発現により産生される蛋白質の機能及び当該蛋白質がアレルギー性を有することが明らかとなっている蛋白質と相同性を有する場合はその旨
③ 宿主の持つ代謝系を変化させる場合はその内容

(2) ベクターに関する情報

イ 名称及び由来
ロ 特性
① ベクターの塩基数及び塩基配列
② 特定の機能を有する塩基配列がある場合は、その機能
③ ベクターの感染性の有無及び感染性を有する場合はその宿主域に関する情報

(3) 遺伝子組換え生物等の調製方法

イ 宿主内に移入された核酸全体の構成
ロ 宿主内に移入された核酸の移入方法

(4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性

① 移入された核酸の複製物が存在する場所
② 移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性
③ 染色体上に複数コピーが存在している場合は、それらが隣接しているか離れているかの別
④ (6) の①において具体的に示される特性について、自然条件の下での個体及び世代間での発現の安定性
⑤ ウイルスの感染その他の経路を経由して移入された核酸が野生動植物等に伝達されるおそれのある場合は、当該伝達性の有無及び程度

(5) 遺伝子組換え生物等の検出及び識別の方法並びにその感度及び信頼性

(6) 宿主又は宿主の属する分類学上の種との相違
移入された核酸の複製物の発現により付与された生理学的又は生態学的特性の具体的な内容.................................31
以下に掲げる生理学的又は生態学的特性について、遺伝子組換え農作物と宿主の属する分類学上の種との間の相違の有無及び相違がある場合はその程度.................................32
遺伝子組換え生物等の使用等に関する情報.................................34
(1) 使用等の内容...34
(2) 使用等の方法...34
(3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法...34
(4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置...34
(5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境での使用等の結果...34
(6) 国外における使用等に関する情報...34
第二 項目ごとの生物多様性影響の評価...36
1 競合における優位性...36
(1) 影響を受ける可能性のある野生動植物等の特定...36
(2) 影響の具体的内容の評価...36
(3) 影響の生じやすさの評価...36
(4) 生物多様性影響が生ずるおそれの有無等の判断...36
2 有害物質の産生性...36
(1) 影響を受ける可能性のある野生動植物等の特定...36
(2) 影響の具体的内容の評価...36
(3) 影響の生じやすさの評価...36
(4) 生物多様性影響が生ずるおそれの有無等の判断...36
3 交雑性...37
(1) 影響を受ける可能性のある野生動植物等の特定...37
(2) 影響の具体的内容の評価...37
(3) 影響の生じやすさの評価...37
(4) 生物多様性影響が生ずるおそれの有無等の判断...37
第三 生物多様性影響の総合的評価...38
引用文献...39
緊急措置計画書...49
資料一覧...51
第一種使用規程承認申請書

平成25年5月7日

農林水産大臣 林 芳正 殿
環境大臣 石原 伸晃 殿

氏名 日本モンサント株式会社
申請者 代表取締役社長 山根 精一郎
住所 東京都中央区銀座四丁目10番10号

第一種使用規程について承認を受けたいので、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律第4条第2項の規定により、次のとおり申請します。
<table>
<thead>
<tr>
<th>遺伝子組換え生物等の種類の名称</th>
<th>ステアリドン酸産生及び除草剤グリホサート耐性ダイズ（変異 Pj.D6D, 变異 Nc.Fad3, 变異 cp4 epsps, Glycine max (L.) Merr.）（MON87769 × MON89788, OECD UI: MON-87769-7 × MON-89788-1）</th>
</tr>
</thead>
<tbody>
<tr>
<td>遺伝子組換え生物等の第一種使用等の内容</td>
<td>食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為</td>
</tr>
<tr>
<td>遺伝子組換え生物等の第一種使用等の方法</td>
<td>－</td>
</tr>
</tbody>
</table>

2
第一 生物多様性影響の評価に当たり収集した情報

1 宿主又は宿主の属する分類学上の種に関する情報

(1) 分類学上の位置付け及び自然環境における分布状況

① 和名、英名及び学名

和名：ダイズ
英名：soybean
学名：Glycine max (L.) Merr.

② 宿主の品種名又は系統名

親系統の作出に使った品種名は以下のとおりである。
MON87769 は品種 A3525 を用いた。
MON89788 は品種 A3244 を用いた。

③ 国内及び国外の自然環境における自生地域

なお、ダイズは夏型一年生の栽培種であり、自生しているという報告はない (OECD, 2000)。
(2) 使用等の歴史及び現状

① 国内及び国外における第一種使用等の歴史

ダイズの起源地域は中国東北部で、紀元前1100年頃にこの地域で栽培化されたと推定され、その後、中国南部、東南アジア、朝鮮及び日本へ栽培が広がったと考えられる（昆野, 1987）。わが国へは弥生時代に渡来、栽培が始まったと考えられている（山内, 1992）。

② 主たる栽培地域、栽培方法、流通実態及び用途

国際連合食糧農業機関（FAO）の統計情報によると、2010年の全世界におけるダイズの栽培面積は約10,239万haであり、上位国を挙げると米国が約3,101万ha、ブラジルが約2,329万ha、アルゼンチンが約1,813万ha、インドが約912万haとなっている。なお、同統計情報に基づく2010年のわが国における栽培面積は約13.8万haであった（FAOSTAT, 2012）。

わが国でのダイズの慣行栽培法は以下のとおりである。播種適期は北海道地方で5月下旬、東北地方南部、北陸・東山地方で6月上旬、関東地方で6月中旬、東海地方以西中国地方までは6月下旬、九州地方で4月上旬から下旬（夏ダイズ）及び7月上旬から8月上旬（秋ダイズ）となる。播種密度は、品種や栽培条件によって異なるが、早生品種・寒地・遅播きの場合などでは密植が行われる。雑草の防除については、育苗期間中に除草を早めに行い、初期の雑草を抑えれば、やがてダイズの茎葉が繁茂してくるため、雑草は比較的発生し難くなる。また病害虫の防除は、ダイズの栽培で最も大切な作業の一つであり、生育初期の害虫に対しては早めに薬剤散布を行う。収穫には、抜き取るか地ぎわから刈り取り、これを地干し又は掛け干しして乾燥し脱粒機で脱粒する方法と、コンバインで刈り取り・脱粒を一緒に行う方法とがある（栗原ら, 2000）。

2011年のわが国におけるダイズの輸入量は約283万トンであり、そのうちの約67%が米国から輸入されている（財務省, 2012）。2009年のわが国におけるダイズの国内生産量は約23万吨であり、国内消費仕向量は約367万トンであった。国内消費仕向量の用途別内訳は、飼料用が約11.5万吨、種子用が約0.7万吨、

1 国内生産量+輸入量−輸出量−在庫の増加量（又は+在庫の減少量）から算出される。2009年は、輸出量は約0万トン、在庫は約5万トン減であったため、23+339−0+5−367（万トン）が国内消費仕向量となる。
加工用が約 265.5 万トン、減耗量が約 6.8 万トン、粗食料が約 82.3 万トンとなっている (農林水産省, 2011a)。

わが国におけるダイズの利用方法は多岐に渡り、味噌、醤油、豆腐、納豆、ゆば、きな粉、煮豆及びもやしとして食されるほか、分離蛋白、濃縮蛋白等は食品添加物として、搾油は食用植物油として、脱脂ダイズは家畜用飼料として利用されている (御子柴, 1995)。

(3) 生理的及び生態学的特性

イ 基本的特性

ダイズは種子繁殖する一年生の双子葉作物であり、子葉は対生し、次に卵形の初生葉が子葉と直角に対生して、それ以降は 3 片の小葉からなる複葉を生じる (OECD, 2000)。茎は主茎と分枝に分けられ、主茎無の複葉の葉腋から分枝が伸長し、また、根は一般に空中窒素固定能を有する根粒菌の寄生によって根粒を着生する (後藤, 1995)。花には 1 本の雌ずいがあり、その基部の子房に 1-5 個の胚珠を内蔵しており、子房は受粉後に肥大して荚を形成する (後藤, 1995)。また、ダイズの花芽分化には日長と温度が大きく影響し、ある時間以上の暗期が花芽分化に必要で、温度は 15℃ 以上を必要として 25℃ 前後までは高いほど促進的に働き、短日高温では促進効果が大きいか、長日高温では促進効果がないか、かえって遅れることがある (昆野, 1987)。

ロ 生息又は生育可能な環境の条件

ダイズ種子の発芽適温は 30-35℃、最低発芽温度及び最低生育温度は 2-4℃であり、10℃ 以下での発芽は極めて悪い (昆野, 1987)。ダイズの栽培適地は、生育期間中 18-28℃ 程度、多照で適度の降雨のあることが望ましいとされているが、今日のダイズ品種では日照感応性が細かく分化して各種の気候に対する適応性が高くなっており、赤道直下のインドネシアから北緯 60 度のスウェーデンでも栽培可能である (昆野, 1987)。

今回、遺伝子導入に用いた MON87769 及び MON89788 の宿主である A3525 及び A3244 は、米国において、およそ北緯 38 度から 40 度の栽培地域に適した品種 (Maturity Group III) に分類される (Wiebold, 2002; Graphic Maps, 2012)。こ

2 ダイズの加工用の定義は搾油用、味噌用及び醤油用への仕向量とされている。
3 食料が生産された農場等の段階から、輸送、貯蔵を経て家庭の台所等に届く段階までに失われる全ての数量。
4 国内消費仕向量-(飼料用+種子用+加工用+減耗量) から算出される。
の栽培地域において、Maturity Group III に分類される品種は 5 月上旬から 6 月中旬の間に播種される。また、7 月中旬から 8 月上旬までが開花期に当たり (Schapaugh, 1997)、開花が始まる最も早い時期の日長時間は約 15 時間である (Lammi, 2008)。

なお、わが国において、ダイズが雑草化した事例はこれまで報告されていない。

ハ 捕食性又は寄生性

ニ 繁殖又は増殖の様式

① 種子の脱粒性、散布様式、休眠性及び寿命

ダイズの種子は裂荚した際に地表に落下する。わが国で栽培されるダイズの裂荚性には品種間差があるが、ダイズが大規模に栽培され、収穫が機械化されている米国などでは、ほとんどの品種が難裂荚性であり裂荚性の程度は低い。今回、遺伝子導入に用いた宿主である A3525 及び A3244 もまた難裂荚性であることが認められている。ダイズの種子休眠性については知られていない。また、種子の発芽能力に関しては、常温で貯蔵した場合に通常約 3 年で失われる (昆野, 1995)。

② 栄養繁殖の様式並びに自然条件において植物体を再生しうる組織又は器官からの出芽特性

ダイズは塊茎や地下茎などによる栄養繁殖を行わず、種子繁殖する。自然条件下において植物体を再生しうる組織又は器官からの出芽特性があるという報告はこれまでのところない。

③ 自殖性、他殖性の程度、自家不和合性の有無、近縁野生種との交雑性及びアポミクシスを生ずる特性を有する場合はその程度

ダイズ (2n=40) と交雑可能な近縁野生種としてわが国に分布しているのは G. soja (和名: タルマメ, 2n=40) のみである (沼田ら, 1975; 日本雑草学会, 1991; OECD, 2000)。タルマメは北海道、本州、四国及び九州に分布するツル性の一年
生植物で、主に河川敷や前植生が撹乱された工場跡地や畑の周辺、その他、日当たりの良い野原や道端に自生している(沼田ら, 1975; 浅野, 1995; 高橋ら, 1996; 大橋, 1999)。また、北海道、東北及び四国で行われたツルマメの自生地に関する調査では、主に河川流域で自生地が確認された例が多く報告されている(河野ら, 2004; 菊池ら, 2005; 猿田ら, 2007; 山田ら, 2008; 猿田ら, 2009; 友岡ら, 2009)。

なお、1950年代にダイズとツルマメの形態的中間型を示す個体としてオオバツルマメがわが国で確認されており(島本ら, 1997; 阿部ら, 2001), その形態がダイズに近かったことから、通常のツルマメと比べて、ダイズと交雑する可能性が高いことが予想された。しかし、過去10年以上にわたり日本各地より800近い集団からツルマメの収集を行った中にオオバツルマメのような形態的中間型を示す個体は見つかっていないとの報告がある(阿部ら, 2001)。そのため、仮にこのような形態的中間型の個体がわが国で自生していたとしても、その生育する範囲はかなり限られていると考えられる。

ダイズとツルマメの自殖性及び他殖性の程度に関して、ダイズとツルマメは、通常開花前に開葯し、受粉が完了する。さらに、開花期の後半は、ほとんどの花が開花しない閉花受粉であるため(阿部ら, 2001), どちらも典型的な自殖性植物であると考えられている。これまでに、通常の場条件でダイズ同士における他家受粉率は平均で3.62% (Beard and Knowles, 1971)、ツルマメ同士における他家受粉率は平均で2.3% (Kiang et al., 1992) と報告されている。

しかし、ダイズの他家受粉率は、条件によっては上昇することもある。例えば、ダイズ間に他家受粉率については、ダイズの開花期にミツバチの巣箱をダイズほ場の中心に設置した場合、平均で2.96~7.26%となり、局所的には19.5%に達したと報告されている (Abrams et al., 1978)。またツルマメ間の他家受粉率に関しても、秋田県雄物川流域で約13%という高い他家受粉率を示す集団が発見されたとの報告がある (Fujita et al., 1997)。この集団から採取されたツルマメの1胚珠当たりの花粉数は平均で600~700粒で、この数は典型的な自家受粉植物と他家受粉植物の1胚珠当たりの平均的な花粉数 (Cruden, 1977) の間であった。この高い他家受粉率の原因が、雄物川流域特有の環境条件によるものなのか、又は集団内の遺伝的特性によるものなのかは明らかにされていない。なお、雄物川流域のツルマメの集団は、護岸工事などによる環境の撹乱が行われており、集団サイズが大きく、訪花昆虫にとっては非常に魅力的な食料供給源であり、このツルマメの集団の周辺では花粉を媒介する昆虫であるミツバチやク
マバチなどが頻繁に観察されていた。このことから、このツルマメ集団の周りの環境には、他家受粉を引き起こす要因が通常よりも多く存在していたと考えられる（Fujita et al., 1997）。

ダイズとツルマメは、前述したようにいずれも閉花受粉を行う自殖性植物である。さらに、吉村ら（2006）は、ツルマメとダイズの開花時期は異なるため、一般にダイズとツルマメとの自然交雑は起こりにくいと述べている。吉村（2008）は、関東地方では両者の開花には1ヶ月ほどの差がみられるとしている。なお、ツルマメの開花時期について、岩手県では8月上旬から9月中旬との報告がある（須田ら、1995）。また、加賀ら（2006）は青森及び広島で採取されたツルマメ系統を秋田、茨城及び広島の3地点で栽培したところ、その開花期は8月中旬から9月中旬であったと報告している。

Nakayama and Yamaguchi（2002）は、ダイズとツルマメの間の交雑率を調査する目的で、丹波黒を用いた交雑試験を行っている。なお、丹波黒を用いた理由は、奥原早生や鶴の子大豆といった品種ではダイズとツルマメの開花期が全く重ならないか重なるとしても数日であるが、丹波黒はダイズ品種の中で開花期が遅いため、ダイズとツルマメの開花期が2週間程度重複したためであると報告している。そのため丹波黒とツルマメ（Gls/93-J-01）をそれぞれ30個体ずつ交互に植えて、その自然交雑率を調査した。自然交雑実験終了後に結実したツルマメから採種された686粒の種子から植物体を生育させ、調査した結果、ダイズとツルマメの雑種であると判断された植物体が5個体認められたことから、その交雑率は0.73%と報告している（Nakayama and Yamaguchi, 2002）。

また、農業環境技術研究所において、2005年に除草剤グリホサート耐性の遺伝子組換えダイズとツルマメを5cm離して異なる3つの播種日で栽培し、ツルマメ個体の収穫種子を調査したところ、ダイズと自然交雑した交雑種子はそれぞれの播種日で7,814粒中0粒、12,828粒中0粒及び11,860粒中1粒であり、この交雑種子はダイズの播種時期をずらして両種の開花最盛期を最も近くした群から見つかったと報告されている（Mizuguti et al., 2009）。

さらに、2006年及び2007年には除草剤グリホサート耐性の遺伝子組換えダイズのプロット（4列（10個体/列））の間にツルマメ3個体を網状の壁に沿わせて栽培した場合の自然交雑率が調査されている（吉村、2008）。その結果、ダイズと自然交雑した交雑種子数は2006年の試験では44,348粒中0粒、ダイズとツルマメの開花期の重複が2006年の試験より長くなった2007年の試験では25,741粒中35粒であったと報告されている（吉村、2008）。また、農業環境技術研究所は2006年及び2007年に、前述の5cm離して栽培する試験区に加え、遺伝子組換えダイズから2m、4m、6m、8m及び10m離してツルマメを栽培した試験
区を設定し、その自然交雑率を調査している。その結果、自然交雑した交雑種子は、2006年の試験では68,121粒中0粒、ダイズとツルマメの開花期間の重複が2006年の試験より長くなった2007年の試験では66,671粒中3粒であった。なお、2007年の試験において見られた3粒の交雑個体については、2m、4m及び6mの区でそれぞれ1個体ずつ得られたと報告されている（吉村，2008）。

よって、ダイズとツルマメ集団が隣接して生育し、かつ開花期が重なり合う場合は交雑し得るが、そのような特殊な条件の場合でも、ダイズとツルマメが交雑する頻度は極めて低いと考えられた。

従来ダイズとツルマメの雑種形成及びその後のダイズからツルマメへの遺伝子浸透に関しては、わが国において経時的な調査が行われている。2003年から2006年にかけてツルマメと従来ダイズの雑種が、どの程度自生地において形成されているかを確認するために、日本各地のダイズ畑周辺で栽培ダイズとツルマメの中間体が探索されている。その結果、調査した58地点（秋田県8地点、茨城県7地点、愛知県4地点、広島県6地点及び佐賀県33地点）のうち秋田県の1地点及び佐賀県の5地点から、形態的にダイズとツルマメの中間的な特徴を持つ17個体の中間体が発見され、その後、マイクロサテライトマーカーにより、これらの中間体はすべてダイズとツルマメの自然交雑に由来することが明らかになった（Kuroda et al., 2010）。

しかし、これら発見された中間体が同じ集団内で生存し続けるかどうかの追跡調査を、中間体の見つかった秋田県1地点及び佐賀県5地点について行ったところ、佐賀県の1地点を除き翌年には雑種後代は確認されなかった。佐賀県の1地点では、翌年に1個体の雑種後代を確認したものの、翌々年は確認されなかった（Kuroda et al., 2010）。

さらに、ダイズからツルマメへの自然交雑の有無をDNAレベルで明らかにす
ために、F1 雑種及び雑種後代が発見された地点を含めて、秋田県、茨城県及び佐賀県の 14 地点の種子 1,344 サンプルをマイクロサテライトマーカーで解析した結果、従来ダイズ由来の遺伝子のツルマメ集団中への浸透は確認されてなかった (Kuroda et al., 2008)。同様に Stewart et al. (2003) も「ダイズから野生種への遺伝子浸透に関する分子学的事実はない」と述べている。

このようなダイズとツルマメの雑種の生存が制限される理由として、雑種自体の競合性の低下が考えられる。ダイズは人為的な栽培環境に適応進化し、自然環境で生育していくための形質を失っている可能性が考えられる。実際に、自然環境に適応したツルマメと栽培作物であるダイズでは形態的及び生態的特性に大きな違いがある。したがって、雑種及び雑種後代が栽培作物であるダイズの遺伝子をある割合で有することにより、自然環境に適応するのに不利になっている可能性がある。

実際に、人為的に交配して得た従来ダイズとツルマメの雑種を親系統であるツルマメとともに播種した後で、それらの定着の様子を 3 年間追跡調査した結果、雑種系統の定着率は親系統であるツルマメと比較して明らかに劣っていたことが示されている (Oka, 1983)。さらに、従来ダイズとツルマメの雑種においては、休眠性、倒伏性及び裂莢性はツルマメに比べ低下していることが報告されている (Oka, 1983; Chen and Nelson, 2004)。

前述したように、Kuroda et al. (2010) は 2003～2006 年に行った中間体の調査の結果、17 個体の中間体を発見しているが、雑種後代は速やかに自然環境から消失していたと報告している。その理由として、1) F1 雑種の休眠性は種子親であるツルマメの形質によって決定するため土壌中で生存するが、雑種後代種子では硬実種子の割合が減少するため冬期に種子が腐るか、又は発芽しても寒さにより枯死する、2) 雑種後代の種子が越冬して発芽しても、その競合性はツルマメより低いために他の植物との競合に勝てず、淘汰されたこと、の 2 つを挙げている (Kuroda et al., 2010)。

④ 花粉の生産量、稔性、形状、媒介方法、飛散距離及び寿命

ダイズの花には 1 花当たり 10 本の雌ずいがあり、各雌ずいは 1 つの葯を持つ (後藤, 1995)。1 葯当たりの花粉数は 374～760 粒 (Palmer et al., 1978)、約 230～540 粒 (Koti et al., 2004) との報告がある。花粉の寿命は短く、その発芽能力は湿度が一定でない条件下では約 8 時間で失われることが報告されている (Abel, 1970)。花粉の直径は 15～25 μm である (Palmer, 2000)。また、花粉の飛散距離に関しては、農業環境技術研究所が 2001 年から 2004 年の 4 年間に行った除草剤グリホサート耐性の遺伝子組換えダイズを用いた非組換えダイズとの交雑試験では、
交雑が観測された最長距離での交雑率は花粉親からの距離が 2001 年は 7.0 m で交雑率 0.040%、2002年は 2.8 m で 0.08%、2003年は 0.7~10.5 m まで調査したが交雑は認められず、2004年は 3.5 m で 0.022%であった (Yoshimura et al., 2006)。また、訪花昆虫の種類は、主にアザミウマ類、カメムシ目の昆虫が観察されたと報告している (Yoshimura et al., 2006)。

ホ 病原性

一

ヘ 有害物質の産生性

ダイズにおいて、自然条件下で野生動植物等の生育又は生息に影響を及ぼす有害物質の産生性は報告されていない。

ト その他の情報

これまで、運搬等においてこぼれ落ちたダイズが雑草化したという報告はない。

2 遺伝子組換え生物等の調製等に関する情報

ステアリドン酸産生及び除草剤グリホサート耐性ダイズ（変改 Pj.D6D, 改変 Nc.Fad3, 改変 cp4 epsps, Glycine max (L.) Merr.） (MON87769×MON89788, OECD UI: MON-87769-7×MON-89788-1) (以下、「本スタック系統ダイズ」という。) は、以下の2つの遺伝子組換えダイズを従来の交雑育種法を用いて育成したスタック系統である。

a) ステアリドン酸産生ダイズ(変改 Pj.D6D, 改変 Nc.Fad3, Glycine max (L.) Merr.) (MON87769, OECD UI: MON-87769-7)（以下、「MON87769」という。）

b) 除草剤グリホサート耐性ダイズ(変改 cp4 epsps, Glycine max (L.) Merr.) (OECD UI: MON-89788-1)（以下、「MON89788」という。）
(1) 供与核酸に関する情報

イ 構成及び構成要素の由来

MON87769 及び MON89788 の作出に用いられた供与核酸の構成要素の由来は、表1～表2(p13～15)に示したとおりである。

ロ 構成要素の機能

① 目的遺伝子、発現調節領域、局在化シグナル、選抜マーカーその他の供与核酸の構成要素それぞれの機能

MON87769 及び MON89788 の作出に用いられた供与核酸の構成要素の機能は、表1～表2(p13～15)に示した。目的遺伝子である改変\textit{Pj.D6D}遺伝子、改変\textit{Nc.Fad3}遺伝子及び改変\textit{cp4 epsps}遺伝子の詳細についても、表1～表2(p13～15)に記載した。
表1 MON87769の作出に用いられたPV-GMPQ1972の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>プラスミド中の位置</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B^注①-Right Border</td>
<td>9,073-9,429</td>
<td>Agrobacterium tumefaciens由来のDNA領域で、T-DNAを伝達する際に利用される右側境界配列を含む配列 (Depicker et al., 1982)。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>9,430-9,480</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>P^注②-7Sα</td>
<td>9,481-10,321</td>
<td>Glycine max のβ-コングリシニン貯蔵蛋白質をコードする遺伝子 (alpha'-bcsp) の転写を誘導するプロモーター及びリーダー配列 (Doyle et al., 1986)。 mRNAの転写を胚特異的に誘導する (Chen et al., 1986)。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>10,322-10,337</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>CS^注③-変改Pj.D6D</td>
<td>10,338-11,678</td>
<td>Primula juliae (サクラソウの1種) のΔ6デサチュラーゼのコード配列 (Ursin et al., 2005)。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>11,679-11,686</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>T^注④-tml</td>
<td>11,687-12,636</td>
<td>A. tumefaciens オクトピン型Tiプラスミドのtml遺伝子の3'末端非翻訳領域(Kemp et al., 2000)。mRNAのポリアデニル化を誘導する。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>12,637-12,737</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>P-7Sα</td>
<td>12,738-14,417</td>
<td>G. max のβ-コングリシニン貯蔵蛋白質をコードする遺伝子 (Sphas2) の転写を誘導するプロモーター及びリーダー配列 (Wang and Dubois, 2004)。mRNAの転写を胚特異的に誘導する (Chen et al., 1986)。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>14,418-14,445</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>CS-変改Nc.Fad3</td>
<td>14,446-15,735</td>
<td>アカパンカビ (Neurospora crassa) のΔ15デサチュラーゼのコード配列 (Ursin et al., 2003)。</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>15,736-15,787</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>T-E9</td>
<td>15,788-16,430</td>
<td>エンドウ (Pisum sativum) のリブロース-1, 5-ニリン酸カルボキシラーゼ小サブユニットをコードするRbcS2遺伝子に由来する3'末端非翻訳領域。mRNAのポリアデニル化を誘導する (Coruzzi et al., 1984)。</td>
</tr>
</tbody>
</table>

注: 1-5はそれぞれの構成要素の説明文を示す。

本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
表1 (つづき) MON87769の作出に用いられたPV-GMPQ1972の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>プラスマド中の位置</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA I (つづき)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>16,431-14</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>B-Left Border</td>
<td>15-456</td>
<td>A. tumefaciens由来のDNA領域で、T-DNAを伝達する際に利用される左側境界配列を含む配列 (Barker et al., 1983)</td>
</tr>
</tbody>
</table>

外側骨格領域 (MON87769には存在しない) |

<table>
<thead>
<tr>
<th>構成要素</th>
<th>位置</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervening Sequence</td>
<td>457–1,619</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>CS-rop</td>
<td>1,620-2,092</td>
<td>ColE1プラスミドに由来するプライマー蛋白質のリプレッサーのコード配列。Escherichia coli中においてプラスミドのコピー数を維持する (Giza and Huang, 1989)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>2,093-2,340</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>OR5-ori-PBR322</td>
<td>2,341-2,969</td>
<td>pBR322から単離された複製開始領域であり、E. coli中においてベクターに自律増殖能を付与する (Sutcliffe, 1979)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>2,970-3,469</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>aadA</td>
<td>3,470-4,358</td>
<td>トランスポゾンの7の3(9)-O-ヌクレオチジルトラシフェラーゼ (アミノグリコシド変換酵素)の細菌プロモーター・コード配列・3'非翻訳領域 (Fling et al., 1985)。スペクチンオマイシン及びストレプトマイシン耐性を付与する</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>4,359-4,494</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
</tbody>
</table>

T-DNA II (MON87769には存在しない) |

<table>
<thead>
<tr>
<th>構成要素</th>
<th>位置</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Right Border</td>
<td>4,495-4,851</td>
<td>A. tumefaciens由来のDNA領域で、T-DNAを伝達する際に利用される右側境界配列を含む (Depicker et al., 1982)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>4,852-4,884</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>P-FMV</td>
<td>4,885-5,448</td>
<td>Figwort mosaic virus (FMV) 35S RNAのプロモーター (Rogers, 2000)。植物細胞内での転写を誘導する</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>5,449-5,491</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>L6-ShkG</td>
<td>5,492–5,558</td>
<td>シロイヌナズナ (Arabidopsis thaliana)の5-エノールピルビルシキミ酸-3-リン酸合成酵素 (EPSPS)をコードしているShkG遺伝子の5'末端非翻訳領域 (Klee et al., 1987)。遺伝子発現の調整に関与する。</td>
</tr>
</tbody>
</table>
表1 (つづき) MON87769の作出に用いられたPV-GMPQ1972の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>プラスミド中の位置</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA II (MON87769には存在しない) (つづき)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS^{7}–CTP2</td>
<td>5,559–5,786</td>
<td>(A.) thalianaのEPSPSをコードするShkG遺伝子に由来する葉緑体輸送ペプチドをコードする配列 (Klee et al., 1987; Herrmann, 1995)。改変CP4EPSPS蛋白質を葉緑体へと輸送する。</td>
</tr>
<tr>
<td>CS-変改cp4 epsps</td>
<td>5,787-7,154</td>
<td>Agrobacterium CP4株の5-エノールビルピルシキミ酸-3-リン酸合成酵素 (CP4 EPSPS) をコードしているaroA遺伝子のコード配列 (Padgette et al., 1996; Barry et al., 1997)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>7,155-7,196</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>T-E9</td>
<td>7,197-7,839</td>
<td>(P.) sativumのリプロース-1, 5-二リン酸カルボキシラーゼ小サブユニットをコードするRbcS2遺伝子に由来する3'末端非翻訳領域。mRNAのポリアデニル化を誘導する (Coruzzi et al., 1984)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>7,840-7,886</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>B-Left Border</td>
<td>7,887-8,328</td>
<td>(A.) tumefaciens由来のDNA領域で、T-DNAを伝達する際に利用される左側境界配列を含む (Barker et al., 1983)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>8,329-8,414</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
<tr>
<td>OR-ori V</td>
<td>8,415-8,811</td>
<td>広宿主域プラスミドRK2に由来する複製開始領域。Agrobacterium中においてベクターに自律増殖能を付与する (Stalker et al., 1981)</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>8,812-9,072</td>
<td>DNAクローニングの際に利用された配列</td>
</tr>
</tbody>
</table>

注1. B-Border (境界配列)
注2. P-Promoter (プロモーター)
注3. CS-Coding Sequence (コード配列)
注4. T-Transcript Termination Sequence (転写終結配列)
注5. OR-Origin of Replication (複製開始領域)
注6. L-Leader (リーダー配列)
注7. TS-Targeting Sequence (ターゲティング配列)
<table>
<thead>
<tr>
<th>構成要素</th>
<th>サイズ (bp)</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA 領域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-Right Border</td>
<td>357</td>
<td>T-DNA を伝達する際に伝達の開始点として利用される右側境界配列を含む A. tumefaciens 由来の DNA 領域（Depicker et al., 1982）。</td>
</tr>
<tr>
<td>P2-FMV/Tsf1*</td>
<td>1,040</td>
<td>シロイヌナズナ Tsf1 プロモーター（Axelos et al., 1989）にFigwort Mosaic Virus (FMV) 35S プロモーターのエンハンサー配列（Richins et al., 1987）を結合させたキメラプロモーター。目的遺伝子の全組織での恒常的発現に関与する。</td>
</tr>
<tr>
<td>L3- Tsf1*</td>
<td>46</td>
<td>シロイヌナズナの翻訳伸長因子 EF-1 alpha をコードする Tsf1 遺伝子のリーダー配列（exon 1）（Axelos et al., 1989）。翻訳の際のリボソーム結合部位である。</td>
</tr>
<tr>
<td>L4- Tsf1*</td>
<td>622</td>
<td>シロイヌナズナの翻訳伸長因子 EF-1 alpha をコードする Tsf1 遺伝子のイントロン配列（Axelos et al., 1989）。目的遺伝子の発現を高める。</td>
</tr>
<tr>
<td>TS5-CTP2</td>
<td>228</td>
<td>シロイヌナズナ EPSPS の shkG 遺伝子に由来する葉緑体輸送ペプチドをコードする配列（Klee et al., 1987）。芳香族アミノ酸の合成が行われる色素体へ移動する。</td>
</tr>
<tr>
<td>CS6-改変 cp4 epsps</td>
<td>1,368</td>
<td>Agrobacterium CP4 株由来の 5-エノールピルピルシキミ酸-3-リン酸合成酵素（CP4 EPSPS）をコードしている aroA（epsps）遺伝子のコーディング配列（Padgette et al., 1996; Barry et al., 1997）。植物中にでの発現量を高めるため、CP4 EPSPS 蛋白質の機能活性を変えることのないように塩基配列に変更を加えて、アミノ酸配列に関しては N 末端から二番目のセリンがロイシンに変更されたのである。</td>
</tr>
<tr>
<td>T7-E9</td>
<td>643</td>
<td>エンドウ（P. sativum）のリブロース-1, 5-二リン酸カルボキシラーゼサブニュート（RbcS2）E9 遺伝子の 3'非翻訳領域配列（Coruzzi et al., 1984）。mRNA の転写を終結させ、ポリアデニル化を誘導する。</td>
</tr>
<tr>
<td>B-Left Border</td>
<td>442</td>
<td>T-DNA を伝達する際に伝達の終結点として利用される左側境界配列を含む A. tumefaciens 由来の DNA 領域（Barker et al., 1983）。</td>
</tr>
</tbody>
</table>

* Tsf1 は、近年 EF-1α として広く知られている。

6 本表に記載された情報に関する権利及び内容の責任は日本モンサント株式会社に帰属する。
表 2 (つづき)MON89788 の作出に用いられた PV-GMGOX20 の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>サイズ (bp)</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA の外側の構成要素（MON89788 には存在しない）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| OR₈-ori V | 397 | 広宿主域プラスミド RK2 に由来する Agrobacterium の複製開始領域であり、A. tumefaciens においてベクターに自律増殖機能を付与する (Stalker et al., 1981)。
| CS-rop | 192 | プライマー蛋白質のリプレッサー (repressor of primer) のコーディング配列であり、Escherichia coli 中においてプラスミドのコピー数を維持する (Giza and Huang, 1989)。
| OR-ori-PBR322 | 629 | pBR322 から単離された複製開始領域であり、E. coli においてベクターに自律増殖能を付与する (Sutcliffe, 1979)。
| aadA | 889 | トランスポゾン Tn 7 由来の、アミノグリコシド変換酵素である 3”(9)-O-ヌクレオチジルトランスフェラーゼの細菌プロモーター及びコーディング配列 (Fling et al., 1985)。スペクチノマイシン及びストレプトマイシン耐性を付与する。

1 B-border (境界配列)
5 P-promoter (プロモーター)
3 L-leader (リーダー配列)
4 t-intron (イントロン)
5 TS- targeting sequence (ターゲティング配列)
6 CS- coding sequence (コード配列)
10 T-Transcription Termination Sequence (転写終結配列)
8 OR- Origin of Replication (複製開始領域)
② 目的遺伝子及び選抜マーカーの発現により産生される蛋白質の機能及び当該蛋白質がアレルギー性を有することが明らかとなっている蛋白質とは同様を有する場合はその旨

5 【改変Δ6 デサチュラーゼ】

MON87769 には Primula juliae 由来の改変 Pj.D6D 遺伝子が導入されている。改変 Pj.D6D 遺伝子が単離された P. juliae は、一般的に Primrose（和名: サクラソウ）の呼び名で知られている植物の属に分類される。

MON87769 に導入された改変 Pj.D6D 遺伝子から発現する改変Δ6 デサチュラーゼは野生型と比べて N 末端側が 16 アミノ酸短くなっている。

この改変 Pj.D6D 遺伝子は、フロントエンドデサチュラーゼ（既存の二重結合とカルボキシル末端との間に二重結合を挿入するデサチュラーゼの総称）である改変Δ6 デサチュラーゼをコードしており、改変Δ6 デサチュラーゼは特定の脂肪酸においてカルボキシル末端から 6 番目と 7 番目の炭素間に二重結合を挿入する。ステアリドン酸（SDA）を産生することが知られている植物や動物では、SDA は α-リノレン酸（ALA）のΔ6 不飽和化とγ-リノレン酸（GLA）のω-3 不飽和化により産生される（図 1, p22）。しかし、ダイズは Δ6 デサチュラーゼを有していないため、SDA を産生することができない。そこで、MON87769 に改変 Pj.D6D 遺伝子を導入することにより、本来、ダイズが産生できなかった SDA が産生される（図 1, p22）。なお、改変Δ6 デサチュラーゼを導入したことにより、MON87769 においてオレイン酸（18:1）やリノール酸（18:2）に二重結合が挿入され、少量のイソリノール酸（ILA、18:2）や GLA（18:3）が産生される（図 1, p22）。

25 【改変Δ15 デサチュラーゼ】

上述の改変 Pj.D6D 遺伝子に加え、MON87769 には Neurospora crassa（和名: アカパンカビ）由来の改変 Nc.Fad3 遺伝子が導入されている。N. crassa は、子嚢菌類に分類されるカビの一種であり、非病原性、非アレルギー性であると考えられている（Perkins and Davis, 2000）。

MON87769 に導入された改変 Nc.Fad3 遺伝子から発現する改変Δ15 デサチュラーゼは、翻訳開始に重要なコザックコンセンサス配列を導入するため、N 末端配列から 2 番目のトレオニンがアラニンに改変されている。

改変 Nc.Fad3 遺伝子を導入することにより、MON87769 において改変Δ15 デサチュラーゼが発現している。改変Δ15 デサチュラーゼは、特定の脂肪酸のカルボキシ
ル末端から15番目と16番目の炭素間に二重結合を挿入する。ダイズにはもともと内在性のΔ15デサチュラーゼが存在するが、その活性レベルは低いことが知られている。そこで、MON87769においてN. crassa由来の変改Δ15デサチュラーゼを発現させることにより、リノール酸からALAの経路、及び変改Δ6デサチュラーゼの働きによって産生されたGLAをSDAへ変換する経路がより促進されるようにした（図1,p22）。

以上のように、ダイズにおいてSDAを産生するためには、Δ6デサチュラーゼをコードしている遺伝子を導入することが必須であるが、MON87769において変改Δ15デサチュラーゼも同時に発現させることにより、より効率的にMON87769中でのSDA含量を高めることができると考えられる。

【変改CP4 EPSPS蛋白質】

植物は除草剤グリホサートを処理すると5-エノールビルビルシキミ酸3-リン酸合成酵素（酵素番号：E.C.2.5.1.19、以下、「EPSPS蛋白質」という。）が阻害されることにより蛋白質合成に必須の芳香族アミノ酸を合成できなくなり枯れてしまう。MON89788の目的遺伝子である変改cp4 epsps遺伝子は除草剤グリホサートに高い耐性を持つ変改CP4 EPSPS蛋白質を発現する。変改CP4 EPSPS蛋白質は、グリホサート存在下でも活性阻害を受けないため、結果として本蛋白質を発現する組換え植物ではシキミ酸合成が正常に機能して生育することができる。

なお、変改cp4 epsps遺伝子は、野生型CP4 EPSPS蛋白質の機能活性を変更せずに植物中での発現量を高めるために野生型cp4 epsps遺伝子の塩基配列に変改を加えたものであり、発現蛋白質のアミノ酸配列に関してはN末端から二番目のセリンがロイシンに変換されているのみである。

親系統で発現する変改Δ6デサチュラーゼ、変改Δ15デサチュラーゼ、及び変改CP4 EPSPS蛋白質が既知のアレルゲンと類似のアミノ酸配列を共有するかどうかを、AD_2013を用いてFASTA型アルゴリズムによって比較したが、既知アレルゲンとの類似性は認められなかった。

③宿主の持つ代謝系を変化させる場合はその内容

7 AD_2013: Food Allergy Research and Resource Program Database (FARRP) (http://www.allergenonline.com/)から得られた配列をもとに作成されたデータベースで2013年1月の時点で、1,630件のアミノ酸配列が含まれる。
【改変 Δ6 デサチュラーゼ及び改変 Δ15 デサチュラーゼ】

MON87769 に導入された改変 Pj.D6D 遺伝子及び改変 Nc.Fad3 遺伝子は、改変 Δ6 デサチュラーゼ及び変 Δ15 デサチュラーゼをコードする遺伝子である。これらのデサチュラーゼは、いずれも脂肪酸合成経路において脂肪酸を不飽和化する酵素である。

本来、ダイズは Δ6 デサチュラーゼを有していないため、SDA を産生することができない。しかし、MON87769 は改変 Δ6 デサチュラーゼと改変 Δ15 デサチュラーゼを発現することにより、SDA を産生することができる。MON87769 は、栽培環境によっても異なるが、ダイズ油中に総脂肪酸当たり約 20%~30%程度の SDA を産生する。また、改変 Δ6 デサチュラーゼを導入したことにより、MON87769 においてリノール酸 (18:2) に二重結合が挿入され、GLA (18:3) が産生される。

改変 Δ6 デサチュラーゼと改変 Δ15 デサチュラーゼの基質特異性については、これまで in vitro の酵母発現システムにおいて調査が行われている (Haas, 2007)。その結果、P. juliae 由来の改変 Δ6 デサチュラーゼにおいて、その不飽和化は特異的であり、オレイン酸やリノール酸、ALA の特定の不飽和脂肪酸の Δ6 不飽和化のみに働くことが確認されている (Haas, 2007)。同様に、N. crassa 由来の改変 Δ15 デサチュラーゼについても、リノール酸や GLA、ジホモ γ-リノレン酸 (DGLA)、アラキドン酸の脂肪酸基質における ω-3 の不飽和化に特異的であることが確認されている (Haas, 2007)。

よって、MON87769 で発現している改変 Δ6 デサチュラーゼ及び改変 Δ15 デサチュラーゼにより、上述の脂肪酸組成の変化以外の宿主の代謝系を変化させる可能性は低いと判断された。

また、MON87769 において新たに産生される脂肪酸である SDA は一般的な魚油に含まれている成分であり、EPA や DHA の代謝前駆体である。GLA は母乳や内臓肉、植物種子油に、ILA は魚や魚油、栄養補助食品に含まれており、ヒトが日頃から摂取しているものである。

また、MON87769 の種子中では、本来ダイズが産生しない脂肪酸である SDA や GLA が産生されている。ダイズの種子中の脂肪酸は主にトリアシルグリセロール (TAG) の一部として種子の油分中に蓄積している。TAG はダイズ種子中の主要な貯
蔵脂質であり、発芽時のエネルギー源として利用されることが知られている (Liu and Brown, 1996; Taiz and Zeiger, 1998)。TAGがエネルギーとして利用される過程では、リバーゼによる加水分解によってTAGがグリセロールと脂肪酸に異化され、この加水分解と同時に脂肪酸はアシルCoAに変換される。さらにこのアシルCoAはβ酸化により分解される。これまでに、ヒマワリ、ケシ、アマニのリバーゼが基質特異性をもたないこと(Prokofiev and Novizkaya, 1958; Fernández-Moya et al., 2000)、多価不飽和脂肪酸のβ酸化に必要な異性化酵素及び還元酵素は、全ての植物や動物に有していること(Stryer, 1995)が報告されている。したがって、ダイズにおいてSDAやGLAのβ酸化は、リノール酸やALAのβ酸化と同様に行われると考えられる。実際に、MON87769の発芽時における種子中及び子葉中の脂肪酸含量を調べた結果、SDA及びGLAの含有量は発芽に伴って減少し、これらの脂肪酸がダイズの内在性脂肪酸であるリノール酸やALAと同様にエネルギー代謝に利用されていることが示された(Culler et al., 2009)。

以上のことから、MON87769において産生されるSDAやGLAはダイズ種子中に存在する他の脂肪酸と同様の生物学的役割を果たしていると考えられる。
図1 P. juliae 由来の改変Δ6 デサチュラーゼ及び N. crassa 由来の改変Δ15 デサチュラーゼを導入したダイズにおける SDA の産生

本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
【改変 CP4 EPSPS 蛋白質】

改変 CP4 EPSPS 蛋白質と機能的に同一である EPSPS 蛋白質は、芳香族アミノ酸を生合成するためのシキミ酸経路を触媒する酵素蛋白質であるが、本経路における律速酵素ではなく、EPSPS 蛋白質の活性が増大しても、本経路の最終産物である芳香族アミノ酸の濃度が高まることはないと考えられている。また、EPSPS 蛋白質は基質であるホスホエノールピルビン酸塩とシキミ酸-3-リン酸塩（以下、「S3P」という。）と特異的に反応することが知られており（Gruys et al., 1992）、これら以外に唯一 EPSPS 蛋白質と反応することが知られているのは S3P の類似体であるシキミ酸である。しかし、EPSPS 蛋白質のシキミ酸及び S3P との反応については、反応の起こりやすさを示す特異性定数（Specificity constant）k_{cat}/K_m の値で比較すると、EPSPS 蛋白質のシキミ酸との反応特異性は、EPSPS 蛋白質の S3P との反応特異性の約 200 万倍の 1 に過ぎず（Gruys et al., 1992）、シキミ酸が EPSPS 蛋白質の基質として反応する可能性は極めて低い。よって、改変 CP4 EPSPS 蛋白質が宿主の代謝系を変化させることはないと考えられる。

(2) ベクターに関する情報

イ 名称及び由来

親系統の作出に用いられたプラスミド・ベクターは以下のとおりである。

MON87769 : E. coli 由来のプラスミド pBR322 をもとに構築された PV-GMPQ1972
MON89788 : E. coli 由来のプラスミド pBR322 をもとに構築された PV-GMGOX20

ロ 特性

① ベクターの塩基数及び塩基配列

親系統の作出に用いられたプラスミド・ベクターの塩基数は以下のとおりである。

MON87769 : PV-GMPQ1972; 16,465 bp
MON89788 : PV-GMGOX20; 9,664 bp
② 特定の機能を有する塩基配列がある場合は、その機能
MON87769 及び MON89788 の作出時に用いた E. coli における構築ベクターの選抜マーカーとして利用された抗生物質耐性遺伝子はスペクチンマイシンやストレプトマイシンに対する耐性を付与する aadA 遺伝子である。なお、この抗生物質耐性遺伝子はいずれの宿主にも導入されていない。

③ ベクターの感染性の有無及び感染性を有する場合はその宿主域に関する情報
PV-GMPQ1972 及び PV-GMGOX20 の感染性はいずれも知られていない。

(3) 遺伝子組換え生物等の調製方法

イ 宿主内に移入された核酸全体の構成
MON87769 及び MON89788 の宿主内に移入された供与核酸の構成要素の位置と制限酵素による切断部位を、それぞれ図 2～図 3（p25～p26）に示した。
図 2 MON87769 の導入遺伝子地図

図中の矢印は導入遺伝子の 5' 及び 3' 末端とそれに続く近傍のダイズ内在性配列を示している。
図中の数字はダイズ核ゲノム中における位置を示しているため、表 1 (p13–p15) に示すプラスミド中の位置の数字とは一致しない。

9 本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
図 3 MON89788 の導入遺伝子地図

図中の矢印は導入遺伝子の 5' 及び 3' 末端とそれに続く近傍のダイズ内在性配列を示している。
図中の数字はダイズ核ゲノム中における位置を示しているため、表 2 (p16–17) に示すプラスミドの構成要素のサイズの数字とは一致しない。
注) TsfI は、近年 EF-1α として広く知られている。

10 本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
宿主内に移入された核酸の移入方法

宿主内への核酸の移入については以下の方法を用いて行った。

MON87769：アグロバクテリウム法によりプラスミド・ベクターPV-GMPQ1972のT-DNA I領域及びT-DNA II領域を移入した。その後、形質転換された再分化個体（R0）を自殖し、その後代であるR1世代においてT-DNA I領域（変Pj.D6D遺伝子発現カセット及び変Nc.Fad3遺伝子発現カセットを含む領域）をホモで有し、T-DNA II（変cp4 epsp遺伝子発現カセットを含む領域）が分離した個体を選抜した。

MON89788：アグロバクテリウム法によりプラスミド・ベクターPV-GMGOX20のT-DNA領域を移入した。

核酸が移入された細胞の選抜の方法

形質転換細胞の選抜は、MON87769及びMON89788ともにグリホサートを添加した培地を用いて行った。

核酸の移入方法がアグロバクテリウム法の場合はアグロバクテリウムの菌体の残存の有無

MON87769及びMON89788のいずれについても、培地へカルベニシリン及びセフォタキシムを添加することにより、形質転換に用いたアグロバクテリウムの除去を行った。

さらに、MON87769及びMON89788において、形質転換に用いたプラスミド・ベクターPV-GMPQ1972及びPV-GMGOX20の外側骨格領域を標的としたPCR分析を行ったところ、プラスミド・ベクターPV-GMPQ1972及びPV-GMGOX20の外側骨格領域は存在しなかった。これらのことから、MON87769及びMON89788には形質転換に用いたアグロバクテリウム菌体は残存しないことを確認した(MonsantoCompany,2009a;UrquhartandPaul,2011)。
核酸が移入された細胞から、移入された核酸の複製物の存在状態を確認した
系統、隔離試験に供した系統その他の生物多様性影響評価に必要な情報を
収集するために用いられた系統までの育成の経過

本スタック系統ダイズは、MON87769 及び MON89788 を交雑育種法により育成し
たスタック系統である。図 4 (p29) に本スタック系統の育成例を示す。なお、以下
に MON87769、MON89788 及び本スタック系統ダイズのわが国における申請・認可
状況を記載した (表 3, p29)。
表 3 MON87769、MON89788 及び本スタック系統ダイズのわが国における申請・認可状況

<table>
<thead>
<tr>
<th></th>
<th>食品</th>
<th>飼料</th>
<th>環境</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON87769</td>
<td>2010年2月申請</td>
<td>2010年4月申請</td>
<td>2011年11月パブリックコメントの終了</td>
</tr>
<tr>
<td>MON89788</td>
<td>2007年11月安全性確認</td>
<td>2007年10月安全性確認</td>
<td>2008年1月第一種使用規程承認</td>
</tr>
<tr>
<td>本スタック系統ダイズ</td>
<td>非開示</td>
<td>2012年12月届出</td>
<td>2013年5月申請</td>
</tr>
</tbody>
</table>

11 本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
12 食品衛生法に基づく。
13 飼料の安全性の確保及び品質の改善に関する法律に基づく。
14 遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律に基づく。
15 社外秘につき非開示。
(4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性

① 移入された核酸の複製物が存在する場所

MON87769 及び MON89788 の導入遺伝子は染色体上に存在することが確認されている（Monsanto Company, 2006; Monsanto Company, 2008）。

② 移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性

【MON87769】

サザンブロット分析による導入遺伝子の解析の結果、MON87769 の染色体上の 1ヶ所に 1コピーの T-DNA I 領域が組み込まれていることを確認した。また、外側骨格領域及び T-DNA II 領域は導入されておらず、T-DNA I 領域内の変異 Pj.D6D 遺伝子発現カセット及び変異 Nc.Fad3 遺伝子発現カセットの全ての構成要素が組み込まれていることを確認した。さらに、導入遺伝子は安定して後代に遺伝していることを、複数世代におけるサザンブロット分析によって確認した（Girault et al., 2009）。

【MON89788】

サザンブロット分析による挿入遺伝子の解析の結果、MON89788 の染色体上の 1ヶ所に 1コピーの T-DNA 領域が組み込まれていることを確認した。また、T-DNA 領域以外の外側骨格領域は挿入されておらず、T-DNA 領域内の変異 cp4 epsps 遺伝子発現カセットも全ての構成要素が組み込まれていることを確認した。さらに、挿入遺伝子は安定して後代に遺伝していることを、複数世代におけるサザンブロット分析によって確認した（Dickinson et al., 2006）。

③ 染色体上に複数コピーが存在している場合は、それらが隣接しているか離れているかの別

MON87769 及び MON89788 は全て 1 コピーなので該当しない（Dickinson et al., 2006; Girault et al., 2009）。

30
④ (6)の①において具体的に示される特性について、自然条件の下での個体間及び世代間での発現の安定性

発現の安定性については以下のように確認した。
MON87769: ウエスタンプロット分析による改变Δ6 デサチュラーゼ及び改变Δ15 デサチュラーゼの発現確認 (Monsanto Company, 2007; Monsanto Company, 2009b)
MON89788: ウエスタンプロット分析による改变CP4 EPSPS 蛋白質の発現確認 (Mozaffar and Silvanovich, 2006)

⑤ ウイルスの感染その他の経路を経由して移入された核酸が野生動植物等に伝達されるおそれのある場合は、当該伝達性的有無及び程度

MON87769 及び MON89788 に移入された核酸の配列には伝達を可能とする機能はないため、ウイルスの感染その他の経路を経由して野生動植物等に伝達されるおそれはない。

(5) 遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度及び信頼性

導入遺伝子及びその周辺のダイズゲノムのDNA配列に特異的なプライマーを用いることにより、MON87769 及び MON89788 を特異的に検出することが可能である (Robinson and Listello, 2005; Dickinson and Masucci, 2006)。本スタック系統ダイズを検出及び識別するためには、当該方法を1個体由来のサンプルごとに用いる必要がある。

(6) 宿主又は宿主の属する分類学上の種との相違

① 移入された核酸の複製物の発現により付与された生理学的又は生態学的特性の具体的内容

本スタック系統ダイズには各親系統に由来する以下の特性が付与されている。
MON87769: 導入遺伝子に由来する改变Δ6 デサチュラーゼ及び改变Δ15 デサチュラーゼによる、ダイズ種子中でのSDAの産生
MON89788: 導入遺伝子に由来する改变CP4 EPSPS 蛋白質による、除草剤グリホサート耐性

これらの蛋白質の機能的な相互作用の可能性について検討した。
MON87769 は改変Δ6 デサチュラーゼと改変Δ15 デサチュラーゼを発現することにより、ダイズ種子中で SDA を産生することができる。また、改変Δ6 デサチュラーゼにより、リノール酸 (18:2) に二重結合が挿入され、GLA (18:3) が産生される（第一の 2-(1)-ロ-③、p19~19）。

改変 Δ6 デサチュラーゼと改変 Δ15 デサチュラーゼの基質特異性は、in vitro の酵母発現システムを用いて調べられており、P. julliae 由来の改変 Δ6 デサチュラーゼが、オレイン酸やリノール酸、ALA の特定の不飽和脂肪酸の Δ6 不飽和化のみに働くこと、N. crassa 由来の改変 Δ15 デサチュラーゼがリノール酸や GLA、ジホモ γ-リノレン酸 (DGLA)、アラキドン酸の ω-3 不飽和化のみに働くことが確認されている（第一の 2-(1)-ロ-③、p18～19）。

一方、MON89788 中で発現する改変 CP4 EPSPS 蛋白質と機能的に同一である EPSPS 蛋白質は、芳香族アミノ酸を生合成するためのシキミ酸経路を触媒する酵素である。EPSPS 蛋白質は高い基質特異性を有し、シキミ酸合成経路の律速酵素ではないことから、改変 CP4 EPSPS 蛋白質が発現することにより EPSPS 蛋白質の活性が増大しても、本経路の最終産物である芳香族アミノ酸の濃度が高まることはないと考えられている。

以上のことから、本スタック系統ダイズで発現する改変Δ6 デサチュラーゼ及び改変Δ15 デサチュラーゼと、改変 CP4 EPSPS 蛋白質の関与する代謝経路は互いに独立しているため、それぞれの親系統由来の発現蛋白質が相互作用を示す可能性は低いと考えられた。

したがって、本スタック系統ダイズにおいて、各親系統が有する形質を併せ持つ以外に評価すべき形質の変化はないと判断し、本スタック系統ダイズと宿主の属する分類学上の種であるダイズとの生理学的又は生態学的特性の相違については、親系統である MON87769 及び MON89788 を個別に調査した結果に基づき評価した。

② 以下に掲げる生理学的又は生態学的特性について、遺伝子組換え農作物と宿主の属する分類学上の種との間の相違の有無及び相違がある場合はその程度

前項で述べたとおり、本スタック系統ダイズにおいて、目的の脂肪酸改変以外に、それぞれの親系統由来の発現蛋白質が植物代謝経路に新たな影響を及ぼ
す可能性は低いと考えられる。したがって、本スタック系統ダイズと宿主の属する分類学上の種であるダイズとの生理学的又は生態学的特性の相違については、親系統である MON87769 及び MON89788 について個別に調査した a~g の結果に基づいて評価することができ、親系統と対照の非組換えダイズには相違がないことが確認されている (Phillips, 2007; 日本モンサント株式会社, 2007; 日本モンサント株式会社, 2009; Baltazar and Kendrick, 2011b; Baltazar and Kendrick, 2011a)。

なお、各親系統の生理学的又は生態学的特性に関する情報は日本版バイオセーフティクリアリングハウスホームページ16 から参照できる。

a 形態及び生育の特性
b 生育初期における低温又は高温耐性
c 成体の越冬性又は越夏性
d 花粉の稔性及びサイズ
e 種子の生産量、脱粒性、休眠性及び発芽率
f 交雑率
g 有害物質の産生性

16 各親系統の生理学的又は生態学的特性に関する情報は以下の URL から参照できる。

[MON87769]
[MON89788]
3 遺伝子組換え生物等の使用等に関する情報

(1) 使用等の内容

食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為。

(2) 使用等の方法

(3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法

(4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置

申請書に添付した緊急措置計画書を参照。

(5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境での使用等の結果

(6) 国外における使用等に関する情報

MON87769、MON89788 及び本スタック系統ダイズの諸外国における申請・認可状況は以下の表4（p35）に示したとおりである。
表 4 MON87769、MON89788 及び本スタック系統ダイズの諸外国における申請・認可状況

<table>
<thead>
<tr>
<th>機関</th>
<th>安全性審査の種類</th>
<th>MON87769</th>
<th>MON89788</th>
<th>本スタック系統ダイズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>米国食品医薬品庁 (FDA)</td>
<td>食品・飼料</td>
<td>2012年7月安全性確認</td>
<td>2007年1月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>米国農務省 (USDA)</td>
<td>環境</td>
<td>2012年7月安全性確認</td>
<td>2007年7月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>カナダ保健省 (Health Canada)</td>
<td>食品</td>
<td>2011年10月安全性確認</td>
<td>2007年6月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>カナダ食品検査庁 (CFIA)</td>
<td>環境・飼料</td>
<td>2011年10月安全性確認</td>
<td>2007年7月安全性確認</td>
<td>2012年1月安全性確認</td>
</tr>
<tr>
<td>欧州食品安全機関 (EFSA)</td>
<td>食品・飼料</td>
<td>ー*</td>
<td>2008年12月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>オーストラリア・ニュージーランド食品基準機関 (FSANZ)</td>
<td>食品</td>
<td>2011年11月安全性確認</td>
<td>2008年7月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>台湾食品薬物管理局 (TFDA)</td>
<td>食品</td>
<td>ー*</td>
<td>2007年12月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>韓国食品医薬品庁 (KFDA)</td>
<td>食品</td>
<td>2013年4月安全性確認</td>
<td>2009年2月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>韓国農村振興庁 (RDA)</td>
<td>環境</td>
<td>2012年8月安全性確認</td>
<td>2009年1月安全性確認</td>
<td>ー*</td>
</tr>
<tr>
<td>中国農業部 (MOA)</td>
<td>環境・食品・飼料</td>
<td>ー*</td>
<td>2008年8月安全性確認</td>
<td>ー*</td>
</tr>
</tbody>
</table>

*FDA、USDA、Health Canada、FSANZ 及び MOA においてスタック系統は規制されていないため、申請は行っていない。

また、MON87769、MON89788 及び本スタック系統ダイズのわが国における申請・認可状況は表 3 (p27) に記載した。

17 本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する。
18 社外秘につき非開示。
第二 項目ごとの生物多様性影響の評価

本スタック系統ダイズは MON87769 及び MON89788 から、交雑育種法により作出した。

第一の 2-(6)-1 (p31～30) で述べたとおり、MON87769 で発現している改変Δ6 デサチュラーゼ及び改変Δ15 デサチュラーゼは、脂肪酸合成経路に特異的に作用する。また、MON89788 で発現している改変 CP4 EPSPS 蛋白質は、チキミ酸合成経路を触媒する。このことから、改変Δ6 デサチュラーゼ及び改変Δ15 デサチュラーゼと、改変 CP4 EPSPS 蛋白質の関与する代謝経路はお互いに独立していると考えられる。また、これらの蛋白質は高い基質特異性を有している。よって、本スタック系統ダイズにおいて、それぞれの親系統由来の発現蛋白質が植物代謝経路に新たな影響を及ぼす可能性は低いと考えられた。

したがって、本スタック系統ダイズの生物多様性影響の評価は、MON87769 及び MON89788 の検討結果に基づいて評価できると判断した。

以上のことから、本スタック系統ダイズの生物多様性影響の評価は、各親系統の諸形質を個別に調査した結果に基づいて実施した。以下の「1 競合における優位性」、「2 有害物質の産生性」、「3 交雑性」の各項目について、改訂版資料1 及び資料2 のとおり、各親系統において生物多様性影響が生ずるおそれはないと結論されている。このため、本スタック系統ダイズは、競合における優位性、有害物質の産生性及び交雑性に起因する生物多様性影響が生ずるおそれはないと判断された。

1 競合における優位性
(1) 影響を受ける可能性のある野生動植物等の特定
(2) 影響の具体的内容の評価
(3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断

2 有害物質の産生性
(1) 影響を受ける可能性のある野生動植物等の特定
(2) 影響の具体的内容の評価
(3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断
3 交雑性
(1) 影響を受ける可能性のある野生動植物等の特定
(2) 影響の具体的内容の評価
(3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断
第三　生物多様性影響の総合的評価

本スタック系統ダイズはステアリドン酸産生ダイズ MON87769 及び除草剤グリホサート耐性ダイズ MON89788 から、交雑育種法により作出した。

本スタック系統ダイズの親系統である MON87769 に由来する改変 Δ6 デサチュラーゼ及び改変 Δ15 デサチュラーゼ並びに MON89788 に由来する改変 CP4 EPSPS 蛋白質は、いずれも高い基質特異性を有し、MON87769 で意図した脂肪酸組成の変化以外に宿主の代謝系を変化させることはないと考えられる。また、各蛋白質の基質は異なり、改変 Δ6 デサチュラーゼ及び改変 Δ15 デサチュラーゼと改変 CP4 EPSPS 蛋白質とは関与する代謝経路も互いに独立している。したがって、本スタック系統ダイズにおいて、それぞれの親系統由来の発現蛋白質が相互作用を示す可能性は低いと考えられ、各親系統が有する形質を併せ持つ以外に評価すべき形質の変化はないと考えられた。このことから、本スタック系統ダイズの生物多様性影響は、各親系統の生物多様性影響評価に基づいて評価できると判断した。

各親系統において、競合における優位性、有害物質の産生性及び交雑性に起因する生物多様性影響が生ずるおそれはないと評価されていることから、総合的評価として、本スタック系統ダイズを第一種使用規程に従って使用した場合に、わが国の生物多様性に影響を生ずるおそれはないと判断された。

Monsanto Company. 2007. Assessment of Delta 6 and Delta 15 Desaturase Protein Levels in Tissues from MON 87769 Soybeans in Support of a Japan Stage III Application (社内報告書).

Monsanto Company. 2009a. Western Blot Analysis of PjD6D and NcD15D Proteins in Immature Seed of Soybean MON 87769 across Multiple Generations (社内報告書).

Monsanto Company. 2009b. Summary of PCR analysis to confirm the absence of Agrobacterium containing PV GMPQ1972 (社内報告書).

浅野 貞夫 1995 原色図鑑/芽ばえとたね 全国農村教育協会 東京 p. 62

阿部 純・島本 義也 2001 第6章 ダイズの進化：ツルマメの果たしてきた役割．栽培植物の自然史－野生植物と人類の共進化－ 山口 裕文・島本 義也 (編) 北海道大学図書刊行会 北海道 pp. 77-95

35 大橋 広好 1999 マメ科．新装版 日本の野生植物 草本II 離弁花類 佐竹 義輔・大井 次三郎・北村 四郎・亘理 俊次・富成 忠夫 (編) 平凡社 東京 p. 211

45
加賀秋人・黒田洋輔・友岡憲彦・Duncan Vaughan・大澤良・佐治光・田部井豊 2006 (2) 遺伝子組換え植物の導入遺伝子の環境拡散リスクと植物多様性影響評価に関する研究 ⑥ダイズとツルマメの雑種後代の適応度に関する研究 遺伝子組換え生物の開放系利用による遺伝子移行と生物多様性への影響評価に関する研究 環境省 東京 pp. 145-155

河野雄飛・高田吉丈・湯本節三 2004 東北地域における野生大豆 (ツルマメ) の収集 一岩手県内北上川および北部河川流域一 植物遺伝資源探索導入調査報告書 独立行政法人 農業生物資源研究所 茨城 通巻第 20 巻 pp. 11-17

菊池彰夫・猿田正恭・岡部昭典 2005 吉野川流域における野生大豆 (ツルマメ) の収集 植物遺伝資源探索導入調査報告書 独立行政法人 農業生物資源研究所 茨城 通巻第 21 巻 pp. 1-7

栗原浩・蓮原雄三・津野幸人・山田啓 2000 第 6 章 豆類 2.ダイズ. 作物栽培の基礎 農山漁村文化協会 東京 pp. 233-246

後藤寛治 1995 ダイズの起源と特性 III 植物としての特性．農業技術大系作物編 6 農山漁村文化協会 東京 pp. 基 19-25

昆野昭晨 1987 13. 食用作物 ダイズ. 農学大事典 第 2 次増訂改版 農学大事典編集委員会 (編) 養賢堂 東京 pp. 551-557

昆野昭晨 1995 生育のステージと生理, 生態 I 種子と発芽. 農業技術大系作物編 6 農山漁村文化協会 東京 pp. 基 29-33

島本 義也・福士 泰史・阿部 純 1997 飼料用ダイズ（オオバツルマメ）の細胞質ゲノムの特徴 育種学雑誌 47（別2）: 159.

5 須田 裕・白澤 澄江 1995 岩手県紫波郡矢巾町の花畑 -開花時期と開花期間- 岩手大学教育学部研究年報 第55巻第1号 165-183.

高橋 将一・羽鹿 牧太・異儀田 和典 1996 九州中部で収集したツルマメの生育特性 九州農業研究 九州農業試験研究機関協議会 熊本 第58号 p. 51.

15 日本雑草学会（編）1991 第Ⅱ編 雑草名．改訂．雑草学用語集 日本雑草学会 東京 p. 67

日本モンサント株式会社 2007 除草剤グリホサート耐性ダイズ（改変 cp4 epsps, Glycine max (L.) Merr.）(MON89788, OECD UI: MON-89788-1)の隔離ほ場における生物多様性影響評価試験結果報告書 (社内報告書)

沼田 真・浅野 貞夫・奥田 重俊・吉沢 長人・桜原 義晴・岩瀬 徹 1975 新版・日本原色雑草図鑑 沼田 真・吉沢 長人（編）全国農村教育協会 東京 p. 107

30 農林水産省 2011a 平成21年度食料需給表（確定値）

農林水産省 2011b 「平成21年度遺伝子組換え植物実態調査」の結果について.

御子柴 公人 1995 日本人とダイズ I. ダイズの日本史. 農業技術大系 作物編 6 農山漁村文化協会 東京 pp. 基 3-8

山内 文男 1992 1. 大豆食品の歴史. 大豆の科学 山内 文男・大久保 一良 (編) 朝倉書店 東京 pp. 1-13

山田哲也・羽鹿牧太・松永亮一・高橋浩司 2008 静岡県伊豆半島におけるツルマメの探索・収集 植物遺伝資源探索導入調査報告書 独立行政法人 農業生物資源研究所 茨城 通巻第 24 巻 pp. 1-7

吉村泰幸 2008 遺伝子組換え植物と野生種との交雑率評価—圃場条件下における遺伝子組換えダイズとツルマメとの自然交雑—. 第 23 回日本雑草学会シンポジウム講演要旨 遺伝子組換え植物の生態系影響と管理 －LMO の適正な利用のために－ 日本雑草学会(編) 日本雑草学会 pp. 30-33

吉村泰幸・水口亜樹・松尾和人 2006 仮場で遺伝子組換えダイズとツルマメが交雑する可能性は低い. 独立行政法人農業環境技術研究所 研究成果情報 第 23 集 pp.22-23
緊急措置計画書

平成25年5月7日

氏名　日本モンサント株式会社
代表取締役社長　山根　精一郎
住所　東京都中央区銀座四丁目10番10号

第一種使用規程の承認を申請しているステアリドン酸産生及び除草剤グリホサート耐性ダイズ（変異Pj.D6D，変異Nc.Fad3，変異cp4 epsps, Glycine max (L.) Merr.）（MON87769×MON89788, OECD UI: MON-87769-7×MON-89788-1）（以下、「本スタック系統ダイズ」という。）の第一種使用等において、生物多様性影響が生ずるおそれがあると、科学的に判断された場合、以下の措置を執ることとする。

1 第一種使用等における緊急措置を講ずるための実施体制及び責任者

平成25年3月現在

<table>
<thead>
<tr>
<th>社内外委</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>日本モンサント株式会社 代表取締役社長 東京都中央区銀座四丁目10番10号（電話番号 03-6226-6080）</td>
</tr>
<tr>
<td></td>
<td>日本モンサント株式会社 農薬規制・環境部 部長</td>
</tr>
<tr>
<td></td>
<td>日本モンサント株式会社 バイオ規制・環境部 部長</td>
</tr>
<tr>
<td></td>
<td>日本モンサント株式会社 バイオ規制・環境部 油糧作物担当課長</td>
</tr>
<tr>
<td></td>
<td>日本モンサント株式会社 広報部 部長</td>
</tr>
<tr>
<td></td>
<td>日本モンサント株式会社 広報部</td>
</tr>
</tbody>
</table>

*：管理責任者
2 第一種使用等の状況の把握の方法

弊社は、モンサント・カンパニーと連絡をとり、種子、穀物生産、収穫物の状況に関し、種子生産、種子供給、販売、穀物取扱業者など使用の可能性がある関係各者から可能な限り情報収集を行う。

3 第一種使用等をしている者に緊急措置を講ずる必要があること及び緊急措置の内容を周知するための方法

弊社は、モンサント・カンパニーと連絡をとり、生産農家や穀物取扱業者などの取引ルートへ本スタック系統ダイズの適切な管理、取扱いなどの生物多様性影響のリスクとその危機管理計画について情報提供を行う。

4 遺伝子組換え生物等を不活化し又は拡散防止措置を執ってその使用等を継続するための具体的な措置の内容

生物多様性影響を生ずるおそれがあると認められた場合、弊社は、モンサント・カンパニーの協力のもと、本スタック系統ダイズが環境中に放出されないように必要な適切な措置をとるとともに、環境中に放出された本スタック系統ダイズに対し、科学的根拠に基づきリスクの程度に応じて、速やかに機動的な対応を行う。

5 農林水産大臣及び環境大臣への連絡体制

弊社は、信頼性のある証拠及びデータにより生物多様性影響が生ずる可能性が示唆された場合、そのことを直ちに農林水産省消費・安全局農産安全管理課及び環境省自然環境局野生生物課に報告する。
資料一覧

改訂版資料1 生物多様性影響評価検討会での検討の結果「ステアリドン酸産生ダイズ（変改Pj.D6D, 改変Nc.Fad3, Glycine max (L.) Merr.）(MON87769, OECD UI: MON-87769-7)
（総合検討会における検討日: 2011年9月27日）

資料2 生物多様性影響評価検討会での検討の結果「除草剤グリホサート耐性ダイズ（変改cp4 epsps, Glycine max (L.) Merr.）(MON89788, OECD UI: MON-89788-1)
（総合検討会における検討日: 2007年10月4日）
名称：ステアリドン酸産生ダイズ(変改 Pj.D6D, 変改 Nc.Fad3, Glycine max (L.) Merr.) （MON87769, OECD UI: MON-87769-7）

第一種使用等の内容：食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれに付随する行為

申請者：日本モンサント株式会社

(1) 生物多様性影響評価の結果について

本組換えダイズは、大腸菌由来のプラスミド pBR322 などをもとに構築された PV-GMPQ1972 をアグロバクテリウム法により導入し作出されている。

本組換えダイズは、サクラソウ由来の Δ6 デサチュラーゼをコードする変改 Pj.D6D 遺伝子及びアカパンカビ由来の Δ15 デサチュラーゼをコードする変改 Nc.Fad3 遺伝子等を含む T-DNA I 領域が染色体上に 1 コピー組み込まれ、複数世代にわたり安定して伝達されていることが遺伝子の分離様式やサザンブロット分析により確認されている。また、これら遺伝子が複数世代にわたり安定して発現していることがウエスタンブロット分析により確認されている。

(ア) 競合における優位性

宿主が属する生物種であるダイズは、我が国において長期にわたり栽培されているが、自生化しているとの報告はなされていない。

我が国の隔離場及び米国の温室において、本組換えダイズの競合における諸形質について調査が行われた結果、種子の生産量における百粒重と低温ストレス実験における乾燥重、主茎長及び草勢で本組換えダイズと対照の非組換えダイズとの間に統計学的有意差が認められた。また、統計処理を行わなかった項目については、発芽始めにおいて、本組換えダイズと対照の非組換えダイズとの間に違いが認められた。

百粒重については、本組換えダイズが 20.33g、対照の非組換えダイズが 21.58g であり、本組換えダイズのほうが低かった。しかしながら、本組換えダイズの百粒重の平均値は、これまでに報告されている従来ダイズ品種の百粒重の範囲内であった。

低温ストレス実験については、一部の項目において有意差が認められたが、関連項目においてそれらの差は一貫性がなかった。

発芽始めについては、本組換えダイズは 7 月 30 日、対照の非組換えダイズは 8 月 1 日であり、その遅い程度は僅かであった。また、発芽個体数及び収穫種子の発芽個体数において、本組換えダイズと対照の非組換えダイズの間に有意差は観察されなかった。

このことから、観察された差異は競合における優位性を高めるものではないと考えられた。

本組換えダイズでは、移入された変改 Pj.D6D 遺伝子及び変改 Nc.Fad3 遺伝子について
て胚特異的プロモーターを用いて発現させることにより、本組換えダイズの種子中では本来ダイズが産生することができない脂肪酸であるステアリドロン酸（SDA）及びγ-リノレアノン酸（GLA）が産生されており、種子中に蓄積されている。

一般的にダイズ種子中で産生された脂肪酸は、ダイズ種子におけるエネルギー源として貯蔵され、主に発芽などにおいて利用されることが知られていることから、本組換えダイズ種子中のSDA及びGLAも同様の役割を果たしていると考えられた。実際に本組換えダイズの種子中に蓄積されたSDA及びGLAの含有量を経時的に調査したところ、SDA及びGLAの含有量は発芽に伴って減少し、これらの脂肪酸がダイズの内在性脂肪酸と同様にエネルギー代謝に利用されていることが示唆された。また、本組換えダイズの隔離ほ場試験の結果において、本組換えダイズと対照の非組換えダイズの発芽特性に違いはないと判断された。

このことから、本組換えダイズ種子中で産生されたSDA及びGLAは内在性脂肪酸と同様の生物学的役割を果たしていると考えられた。よって、本組換えダイズにおいて産生されるSDAやGLAは、本組換えダイズの競合における優位性を高めるものではないと考えられた。

以上より、影響を受ける可能性のある野生動植物等の特定はされず、競合における優位性に起因する生物多様性影響が生ずるおそれはないと判断した。

(イ) 有害物質の産生性

宿主が属する生物種であるダイズについては、野生動植物等への有害物質を産生するとの報告はなされていない。

本組換えダイズは、改変Δ6デサチュラーゼ及び改変Δ15デサチュラーゼが発現しているが、当該蛋白質が有害物質であるとする報告はなく、既知アレルゲンと構造的に類似性のある配列を有しないことが確認されている。また、改変Δ6デサチュラーゼ及び改変Δ15デサチュラーゼは基質特異性が高いため、これらのデサチュラーゼが宿主の他代謝系に影響を及ぼし、新たな有害物質を産生する可能性は極めて低いと考えられた。さらに、これまでにSDAやGLAが有害物質であるとする報告はなされていない。

本組換えダイズがダイズ種子を食害する野生生物に摂食された場合、本組換えダイズの種子に含まれるSDAやGLAが野生生物に影響を与える可能性が考えられた。しかしながら、これら野生生物に摂食された場合、本組換えダイズの種子に含まれるSDAやGLAは野生生物において代謝されると考えられるため、本組換えダイズの種子に含まれるSDAやGLAはこれらの野生生物に影響を与えるものではないと考えられた。

我が国の隔離ほ場において、本組換えダイズの有害物質（根から分泌されて他の植物及び土壤微生物へ影響を与えるもの、植物体が内部に有し枯死した後に他の植物に影響を与えるもの）の産生性の有無を土壤微生物相試験、織込み試験及び後作試験により検討した結果、本組換えダイズと対照の非組換えダイズとの間に差異は認められなかった。

以上より、影響を受ける可能性のある野生動植物等の特定はされず、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないと申請者による結論は妥当であると判断した。
(ウ) 交雑性

ダイズの近縁種としてはツルマメが知られており、ともに染色体数が2n=40であり交雑可能であることから、影響を受ける可能性のある野生植物としてツルマメを特定し、以下の検討を行った。

ダイズとツルマメの人為的交雑を行った雛種の生育には特に障害が見られないことから、我が国の自然環境下において本組換えダイズとツルマメが交雑した場合は、その雛種が生育するとともに、当該雛種からツルマメへの戻し交雑を通じて、本組換えダイズに移入された遺伝子がツルマメの集団中で低い割合にとどまらずに拡散していく可能性がある。また、ツルマメは全国に分布し、河原や土手、畑の周辺や果樹園等に自生していることから、本組換えダイズが近接して生育した場合、交雑する可能性がある。

しかしながら、

- ダイズとツルマメの雛種形成及び後代への遺伝子浸透について、数年間、日本各地のダイズ畑周辺においてツルマメ集団を追跡調査し、遺伝子マーカー等を用いて交雑の有無を分析したところ、雛種後代の存在を示唆する結果は得られなかったとの報告であること。
- ダイズとツルマメは一般的に開花期が重なりにくいことが知られており、人為的に開花期を一致させて交互に株間50cmの隣接栽培を行った場合でも、交雑率は73％であるとの報告であること。
- 除草剤グリホサート耐性組換えダイズ40-3-2系統とツルマメの開花期を一致させ、隣接して栽培しダイズにツルマメが巻きついた状態で生育させた交雑試験では、収穫したツルマメ種子32,502粒中1粒がダイズと交雑していたとの報告があること。

などに加え、我が国の隔離場において本組換えダイズと対照の非組換えダイズとを隣接した試験区で栽培し、非組換えダイズへの自然交雑を調査したところ、交雑は認められなかった。また、生殖に関わる形質（花粉の稔性、花粉形態、種子の生産性）を調査したが、本組換えダイズの特性は種の範囲を超えるものでなく、本組換えダイズとツルマメとの交雑性は従来のダイズ品種とツルマメ同様に極めて低いと推測された。

さらに、本組換えダイズにおいては、導入遺伝子による影響が宿主の持つ代謝系を変化させ、交雑性に関わる生理学的又有は生態学的特性について宿主との相違をもたらすことはないと考えられることから、本組換えダイズとツルマメの交雑率は、従来のダイズとツルマメの交雑率と同等に低いと考えられた。

以上より、交雑性に起因する生物多様性影響が生ずるおそれはないとする申請者による結論は妥当であると判断した。

(2) 生物多様性影響評価を踏まえた結論

以上を踏まえ、本組換えダイズを第一種使用規程に従って使用した場合に、我が国の生物多様性に影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判断した。
（別紙）

生物多様性影響評価検討会での検討の結果

1 (略)
2 (略)
3 (略)
4 (略)
5 名称：除草剤グリホサート耐性ダイズ

（改変 cp4 epsps, Glycine max (L.) Merr）
（MON89788, OECD UI: MON-89788-1）

第一種使用等の内容：食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為

申請者：日本モンサント(株)

（1）生物多様性影響評価の結果について

ア 競合における優位性

宿主が属する生物種であるダイズ（Glycine max (L.) Merr.）は、我が国において長期にわたり栽培されているが、自生化しているとの報告はなされていない。

本組換えダイズでは、移入された改変 cp4 epsps 遺伝子によりグリホサート耐性が付与されている。しかし、自然環境下においてグリホサートが選択圧となることは想定されず、この形質により競合における優位性が高まるとは考えにくい。

我が国の隔離場において、競合における優位性に関わる諸形質につ
いて調査が行われており、種子の百粒重のみ、非組換えダイズとの間で有意差が認められた。しかしながら、この差異のみにより競合における優位性が高まるとは考えにくい。

以上より、影響を受ける可能性のある野生動植物等は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

イ 有害物質の産生性

宿主が属する生物種であるダイズについては、野生動植物等への有害物質を産生するとの報告はなされていない。

本組換えダイズでは、改変 CP4 EPSPS 蛋白質の産生性が付与されているが、本蛋白質が有害物質であるとの報告はなく、既知のアレルゲンとのアミノ酸配列の相同性は認められていない。また、本蛋白質は基質特異性が高く、宿主の代謝系に影響を及ぼすことはないと考えられる。

我が国の隔離試場において、本組換えダイズの有害物質（根から分泌され他の植物に影響を与えるもの、根から分泌され土壌微生物に影響を与えるもの、植物体が内部に有し枯死した後に他の植物に影響を与えるもの）の産生性が調査されているが、非組換えダイズとの有意差は認められていない。

以上より、影響を受ける可能性のある野生動植物等は特定されず、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。
ウ 交雑性

（ア）影響を受ける可能性のある野生動植物等の特定

我が国に自生しているツルマメ（Glycine soja Sieb. et Zucc.）は、ダイズと交雑することが知られているため、影響を受ける可能性のある野生植物としてツルマメが特定される。

（イ）影響の具体的内容の評価

既存の文献によれば、ダイズとツルマメの雑種の生育や生殖には障害が見られないことから、我が国の自然環境下において本組換えダイズとツルマメが交雑した場合は、その雑種が生育するとともに、当該雑種からツルマメへの戻し交雑を経て、本組換えダイズに移入された遺伝子がツルマメの集団中で低い割合でとどまらずに拡散していく可能性がある。

（ウ）影響の生じやすさの評価

ツルマメは全国の日当たりのよい野原、道ばた等に広く自生していることから、本組換えダイズが我が国において栽培された場合は、双方が近接して生育する機会があることは否定できない。しかしながら、

a．ダイズ及びツルマメは共に閉花受精を行う典型的な自殖性作物であり、また、一般にダイズの開花期はツルマメより1ヶ月近く早いこと。

b．既存の文献によれば、開花時期がツルマメと重なるダイズの系統とツルマメを隣接して生育させた場合であっても、その交雑率は1％
未満であったこと、

c 我が国における隔離は場試験の結果から、本組換えダイズの交雑性は、従来のダイズと同程度であり、ツルマメとの交雑率も従来のダイズと同程度と考えられること、

d 改変 cp4 epsps 遺伝子の発現により付与されるグリホサート耐性は、自然環境下での選択圧に対して優位に働く可能性は低いと考えられること、

などから、我が国の自然環境下で本組換えダイズとツルマメが稀に近接して生育した場合であっても、それらが交雑する可能性及び移入された遺伝子がツルマメの集団中で低い割合でとどまらずに拡散していく可能性は、確率的に極めて低いと考えられる。

（2）生物多様性影響評価書を踏まえた結論

以上を踏まえ、本組換えダイズを第一種使用規程に従って使用した場合に生物多様性影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判断した。